Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37896202

RESUMO

Targeted protein degradation has emerged as an alternative therapy against cancer, offering several advantages over traditional inhibitors. The new degrader drugs provide different therapeutic strategies: they could cross the phospholipid bilayer membrane by the addition of specific moieties to extracellular proteins. On the other hand, they could efficiently improve the degradation process by the generation of a ternary complex structure of an E3 ligase. Herein, we review the current trends in the use of TAC-based technologies (TACnologies), such as PROteolysis TArgeting Chimeras (PROTAC), PHOtochemically TArgeting Chimeras (PHOTAC), CLIck-formed Proteolysis TArgeting Chimeras (CLIPTAC), AUtophagy TArgeting Chimeras (AUTAC), AuTophagosome TEthering Compounds (ATTEC), LYsosome-TArgeting Chimeras (LYTAC), and DeUBiquitinase TArgeting Chimeras (DUBTAC), in experimental development and their progress towards clinical applications.

2.
Int J Mol Sci ; 23(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35628286

RESUMO

Cyclin-dependent kinases (CDKs) are a broad family of proteins involved in the cell cycle and transcriptional regulation. In this article, we explore the antitumoral activity of a novel proteolysis-targeting chimera (PROTAC) compound against CDK9. Breast cancer cell lines from different subtypes were used. Transcriptomic mapping of CDKs in breast cancer demonstrated that the expression of CDK9 predicted a detrimental outcome in basal-like tumors (HR = 1.51, CI = 1.08-2.11, p = 0.015) and, particularly, in the luminal B subtype with HER2+ expression (HR = 1.82, CI = 1.17-2.82, p = 0.0069). The novel CDK9 PROTAC, THAL-SNS-032, displayed a profound inhibitory activity in MCF7, T47D, and BT474 cells, with less effect in SKBR3, HCC1569, HCC1954, MDA-MB-231, HS578T, and BT549 cells. The three cell lines with HER2 overexpression and no presence of ER, SKBR3, HCC1569, and HCC1954 displayed an EC50 three times higher compared to ER-positive and dual ER/HER2-positive cell lines. BT474-derived trastuzumab-resistant cell lines displayed a particular sensitivity to THAL-SNS-032. Western blot analyses showed that THAL-SNS-032 caused a decrease in CDK9 levels in BT474, BT474-RH, and BT474-TDM1R cells, and a significant increase in apoptosis. Experiments in animals demonstrated an inverse therapeutic index of THAL-SNS-032, with doses in the nontherapeutic and toxic range. The identified toxicity was mainly due to an on-target off-tumor effect of the compound in the gastrointestinal epithelium. In summary, the potent and efficient antitumoral properties of the CDK9 PROTAC THAL-SNS-032 opens the possibility of using this type of compound in breast cancer only if specifically delivered to cancer cells, particularly in ER/HER2-positive and HER2-resistant tumors.


Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Proteólise , Receptor ErbB-2/metabolismo
3.
Cancers (Basel) ; 13(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925616

RESUMO

Among the described druggable vulnerabilities, acting on the DNA repair mechanism has gained momentum, with the approval of PARP inhibitors in several indications, including breast cancer. However, beyond the mere presence of BRCA1/BRCA2 mutations, the identification of additional biomarkers that would help to select tumors with an extreme dependence on DNA repair machinery would help to stratify therapeutic decisions. Gene set enrichment analyses (GSEA) using public datasets evaluating expression values between normal breast tissue and breast cancer identified a set of upregulated genes. Genes included in different pathways, such as ATM/ATR, BARD1, and Fanconi Anemia, which are involved in the DNA damage response, were selected and confirmed using molecular alterations data contained at cBioportal. Nineteen genes from these gene sets were identified to be amplified and upregulated in breast cancer but only five of them NBN, PRKDC, RFWD2, UBE2T, and YWHAZ meet criteria in all breast cancer molecular subtypes. Correlation of the selected genes with prognosis (relapse free survival, RFS, and overall survival, OS) was performed using the KM Plotter Online Tool. In last place, we selected the best signature of genes within this process whose upregulation can be indicative of a more aggressive phenotype and linked with worse outcome. In summary, we identify genomic correlates within DNA damage pathway associated with prognosis in breast cancer.

4.
Nutrients ; 13(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806806

RESUMO

In diabetes mellitus type 2 (DM2), developed obesity is referred to as diabesity. Implementation of a healthy diet, such as the Mediterranean, prevents diabesity. Saffron is frequently used in this diet because of its bioactive components, such as crocetin (CCT), exhibit healthful properties. It is well known that obesity, defined as an excessive accumulation of fat, leads to cardiometabolic pathology through adiposopathy or hypertrophic growth of adipose tissue (AT).This is related to an impaired adipogenic process or death of adipocytes by obesogenic signals. We aimed to evaluate the effect of the pathogenic microenvironment and CCT, activating differentiation of healthy preadipocytes (PA). For this, we used human cryopreserved PA from visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) depots obtained from healthy and obese-DM2 donors. We studied the effect of a metabolically detrimental (diabesogenic) environment, generated by obese-DM2 adipocytes from VAT (VdDM) or SAT (SdDM), on the viability and accumulation of intracellular fat of adipocytes differentiated from healthy PA, in the presence or absence of CCT (1 or 10 µM). Intracellular fat was quantified by Oil Red O staining. Cytotoxicity was measured using the MTT assay. Our results showed that diabesogenic conditions induce cytotoxicity and provide a proadipogenic environment only for visceral PA. CCT at 10 µM acted as an antiadipogenic and cytoprotective compound.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/citologia , Carotenoides/farmacologia , Diferenciação Celular , Diabetes Mellitus/tratamento farmacológico , Obesidade/tratamento farmacológico , Vitamina A/farmacologia , Adipócitos/patologia , Adipogenia , Adipocinas , Animais , Linhagem Celular , Diabetes Mellitus/sangue , Diabetes Mellitus/patologia , Humanos , Gordura Intra-Abdominal , Masculino , Obesidade/sangue , Obesidade/patologia , Ratos , Gordura Subcutânea , Vitamina A/análogos & derivados
5.
J Exp Clin Cancer Res ; 40(1): 106, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741018

RESUMO

BACKGROUND: Although the anti-HER2 antibody trastuzumab augments patient survival in HER2+ breast cancer, a relevant number of patients progress to this treatment. In this context, novel drug combinations are needed to increase its antitumor activity. In this work, we have evaluated the efficacy of proteolysis targeting chimera (PROTAC) compounds based on BET inhibitors (BETi) to augment the activity of trastuzumab in HER2+ breast cancer models. METHODS: BT474 and SKBR3 HER2+ breast cancer cell lines were used. The effects of trastuzumab and the BET-PROTAC MZ1 either alone or in combination, were evaluated using MTT proliferation assays, three-dimensional invasion and adhesion cultures, flow cytometry, qPCR and Western blot. In vivo studies were carried out in a xenografted model in mice. Finally, a Clariom_S_Human transcriptomic array was applied to identify deregulated genes after treatments. RESULTS: MZ1 induced a higher antiproliferative effect compared to the BETi JQ1. The combination of MZ1 and -trastuzumab significantly decreased cell proliferation, the formation of three-dimensional structures and cellular invasion compared to either of the drugs alone. Evaluation of apoptosis resulted in an increase of cell death following treatment with the combination, and biochemical studies displayed modifications of apoptosis and DNA damage components. In vivo administration of agents alone or combined, to tumors orthotopically xenografted in mice, resulted in a decrease of the tumor volume only after MZ1-Trastuzumab combination treatment. Results from a transcriptomic array indicated a series of newly described transcription factors including HOXB7, MEIS2, TCERG1, and DNAJC2, that were associated to poor outcome in HER2+ breast cancer subtype and downregulated by the MZ1-trastuzumab combination. CONCLUSIONS: We describe an active novel combination that includes the BET-PROTAC MZ1 and trastuzumab, in HER2+ tumors. Further studies should be performed to confirm these findings and pave the way for their future clinical development.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/metabolismo , Trastuzumab/uso terapêutico , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Camundongos , Prognóstico , Trastuzumab/farmacologia
6.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261142

RESUMO

Basal-like breast cancer is an incurable disease with limited therapeutic options, mainly due to the frequent development of anti-cancer drug resistance. Therefore, identification of druggable targets to improve current therapies and overcome these resistances is a major goal. Targeting DNA repair mechanisms has reached the clinical setting and several strategies, like the inhibition of the CHK1 kinase, are currently in clinical development. Here, using a panel of basal-like cancer cell lines, we explored the synergistic interactions of CHK1 inhibitors (rabusertib and SAR020106) with approved therapies in breast cancer and evaluated their potential to overcome resistance. We identified a synergistic action of these inhibitors with agents that produce DNA damage, like platinum compounds, gemcitabine, and the PARP inhibitor olaparib. Our results demonstrated that the combination of rabusertib with these chemotherapies also has a synergistic impact on tumor initiation, invasion capabilities, and apoptosis in vitro. We also revealed a biochemical effect on DNA damage and caspase-dependent apoptosis pathways through the phosphorylation of H2AX, the degradation of full-length PARP, and the increase of caspases 3 and 8 activity. This agent also demonstrated synergistic activity in a platinum-resistant cell line, inducing an increase in cell death in response to cisplatin only when combined with rabusertib, while no toxic effect was found on non-tumorigenic breast tissue-derived cell lines. Lastly, the combination of CHK1 inhibitor with cisplatin and gemcitabine resulted in more activity than single or double combinations, leading to a higher apoptotic effect. In conclusion, in our study we identify therapeutic options for the clinical development of CHK1 inhibitors, and confirm that the inhibition of this kinase can overcome acquired resistance to cisplatin.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Platina/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Sinergismo Farmacológico , Feminino , Humanos , Invasividade Neoplásica , Platina/farmacologia , Gencitabina
7.
Cancer Lett ; 491: 50-59, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32735909

RESUMO

The inhibition of bromo- and extraterminal domains (BET) has shown an anti-proliferative effect in triple negative breast cancer (TNBC). In this article we explore mechanisms of resistance to BET inhibitors (BETi) in TNBC, with the aim of identifying novel ways to overcome such resistance. Two cellular models of acquired resistance to the BET inhibitor JQ1 were generated using a pulsed treatment strategy. MTT, colony formation, and cytometry assays revealed that BETi-resistant cells were particularly sensitive to PLK1 inhibition. Targeting of the latter reduced cell proliferation, especially in resistant cultures. Quantitative PCR analysis of a panel of mitotic kinases uncovered an increased expression of AURKA, TTK, and PLK1, confirmed by Western blot. Only pharmacological inhibition of PLK1 showed anti-proliferative activity on resistant cells, provoking G2/M arrest, increasing expression levels of cyclin B, pH3 and phosphorylation of Bcl-2 proteins, changes that were accompanied by induction of caspase-dependent apoptosis. JQ1-resistant cells orthotopically xenografted into the mammary fat pad of mice led to tumours that retained JQ1-resistance. Administration of the PLK1 inhibitor volasertib resulted in tumour regression. These findings open avenues to explore the future use of PLK1 inhibitors in the clinical setting of BETi-resistant patients.


Assuntos
Azepinas/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Pteridinas/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
8.
J Cell Mol Med ; 24(5): 3117-3127, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32032474

RESUMO

Identification of druggable vulnerabilities is a main objective in triple-negative breast cancer (TNBC), where no curative therapies exist. Gene set enrichment analyses (GSEA) and a pharmacological evaluation using a library of compounds were used to select potential druggable combinations. MTT and studies with semi-solid media were performed to explore the activity of the combinations. TNBC cell lines (MDAMB-231, BT549, HS-578T and HCC3153) and an additional panel of 16 cell lines were used to assess the activity of the two compounds. Flow cytometry experiments and biochemical studies were also performed to explore the mechanism of action. GSEA were performed using several data sets (GSE21422, GSE26910, GSE3744, GSE65194 and GSE42568), and more than 35 compounds against the identified functions were evaluated to discover druggable opportunities. Analyses done with the Chou and Talalay algorithm confirmed the synergy of dasatinib and olaparib. The combination of both agents significantly induced apoptosis in a caspase-dependent manner and revealed a pleotropic effect on cell cycle: Dasatinib arrested cells in G0/G1 and olaparib in G2/M. Dasatinib inhibited pChk1 and induced DNA damage measured by pH2AX, and olaparib increased pH3. Finally, the effect of the combination was also evaluated in a panel of 18 cell lines representative of the most frequent solid tumours, observing a particularly synergism in ovarian cancer. Breast cancer, triple negative, dasatinib, olaparib, screening.


Assuntos
Dasatinibe/farmacologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Transcriptoma/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Feminino , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
9.
Oncoimmunology ; 8(10): e1629780, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31646075

RESUMO

Antigen recognition by MHC class I molecules is a key step for the initiation of the immune response. We hypothesized that expression of these molecules could be a marker of immune-activated breast cancers. Data from KM Plotter were extracted to develop an exploratory cohort. Information from Cancer Genome Atlas (TCGA) and METABRIC was used to create two validation cohorts. Raw data were re-processed and analyzed using plyr R and Bioconductor. We predicted epitope-HLA binding to MHC I molecules by using NetMHC 4.0. Cox proportional hazards regression was computed to correlate gene expression and survival outcome. There was a weak but positive correlation between mutational burden and the expression of most MHC class I molecules. In the exploratory cohort, expression of HLA-A and HLA-B was associated with favorable relapse-free survival (RFS) and overall survival (OS) in the basal-like subgroup. This was confirmed in the METABRIC and TCGA dataset. Expression of HLA-A and HLA-B was associated with biomarkers of T cell activation (GZMA, GZMB, and PRF1) and improved the predictive capacity of known immunologic signatures. Several neopeptides expressed in breast cancer were also identified including FUK, SNAPC3, GC, ANO8, DOT1L, HIST1H3F, MYBPH, STX2, FRMD6, CPSF1, or SMTN, among others. Expression of HLA A and B is associated with T cell activation and identifies immune activated, basal-like breast cancers with favorable prognosis. Antigen recognition markers should be incorporated into the assessment of the tumor immune state of basal-like breast patients.

10.
J Exp Clin Cancer Res ; 38(1): 383, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31470872

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is an incurable disease where novel therapeutic strategies are needed. Proteolysis targeting chimeric (PROTAC) are novel compounds that promote protein degradation by binding to an ubiquitin ligase. In this work, we explored the antitumoral activity of two novel BET-PROTACs, MZ1 and ARV-825, in TNBC, ovarian cancer and in a BET inhibitor resistant model. METHODS: OVCAR3, SKOV3, BT549, MDA-MB-231 cell lines and the JQ1 resistant cell line MDA-MB-231R were evaluated. MTTs, colony-forming assay, three-dimensional cultures in matrigel, flow cytometry, and western blots were performed to explore the anti-proliferative effect and biochemical mechanism of action of MZ1 and ARV-825. In vivo studies included BALB/c nu/nu mice engrafted with MDA-MB-231R cells. RESULTS: The BET-PROTACs MZ1 and ARV-825 efficiently downregulated the protein expression levels of the BET protein BRD4, in MDA-MB-231 and MDA-MB-231R. MZ1 and ARV-825 also showed an antiproliferative effect on sensitive and resistant cells. This effect was corroborated in other triple negative (BT549) and ovarian cancer (SKOV3, OVCAR3) cell lines. MZ1 provoked G2/M arrest in MDA-MB-231. In addition, a profound effect on caspase-dependent apoptosis was observed in both sensitive and resistant cells. No synergistic activity was observed when it was combined with docetaxel, cisplatin or olaparib. Finally, in vivo administration of MZ1 rescued tumor growth in a JQ1-resistant xenograft model, reducing the expression levels of BRD4. CONCLUSIONS: Using both in vitro and in vivo approaches, we describe the profound activity of BET-PROTACs in parental and BETi-resistant TNBC models. This data provides options for further clinical development of these agents in TNBC.


Assuntos
Azepinas/farmacologia , Dipeptídeos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Talidomida/análogos & derivados , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteólise , Talidomida/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
11.
Sci Rep ; 9(1): 5734, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952871

RESUMO

A specific family of proteins that participate in epigenetic regulation is the bromodomain (BRD) family of proteins. In this work, we aimed to explore the expression of the BRD family at a transcriptomic level in breast cancer, and its association with patient survival. mRNA level data from normal breast and tumor tissues were extracted from public datasets. Gene set enrichment analysis (GSEA) was performed to identify relevant biological functions. The KM Plotter Online tool was used to evaluate the relationship between the presence of different genes and patient clinical outcome. mRNA level data from HER2+ breast cancer patients sensible and resistant to trastuzumab were also evaluated. The BRD family was an enriched function. In HER2 positive tumors the combined analyses of BRD2, BAZ1A, TRIM33 and ZMYND8 showed a detrimental relapse free survival (RFS). Similarly, the combined analysis of BRD2, BAZ1A, PHIP, TRIM33, KMT2A, ASH1L, PBRM1, correlated with an extremely poor overall survival (OS). The prognosis was confirmed using an independent dataset from TCGA. Finally, no relation between expression of BRD genes and response to trastuzumab was observed in the HER2 population. Upregulation of some BRD genes is associated with detrimental outcome in HER2 positive tumors, regardless trastuzumab treatment.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Prognóstico , Receptor ErbB-2/metabolismo , Taxa de Sobrevida
12.
PLoS One ; 14(4): e0209134, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30990809

RESUMO

PURPOSE: Epigenetic regulating proteins like histone methyltransferases produce variations in several functions, some of them associated with the generation of oncogenic processes. Mutations of genes involved in these functions have been recently associated with cancer, and strategies to modulate their activity are currently in clinical development. METHODS: By using data extracted from the METABRIC study, we searched for mutated genes linked with detrimental outcome in invasive breast carcinoma (n = 772). Then, we used downstream signatures for each mutated gene to associate that signature with clinical prognosis using the online tool "Genotype-2-Outcome" (http://www.g-2-o.com). Next, we performed functional annotation analyses to classify genes by functions, and focused on those associated with the epigenetic machinery. RESULTS: We identified KMT2D, SETD1A and SETD2, included in the lysine methyltransferase activity function, as linked with poor prognosis in invasive breast cancer. KMT2D which codes for a histone methyltransferase that acts as a transcriptional regulator was mutated in 6% of triple negative breast tumors and found to be linked to poor survival. Genes regulated by KMT2D included RAC3, KRT23, or KRT14, among others, which are involved in cell communication and signal transduction. Finally, low expression of KMT2D at the transcriptomic level, which mirror what happens when KMT2D is mutated and functionally inactive, confirmed its prognostic value. CONCLUSION: In the present work, we describe epigenetic modulating genes which are found to be mutated in breast cancer. We identify the histone methyltransferase KMT2D, which is mutated in 6% of triple negative tumors and linked with poor survival.


Assuntos
Proteínas de Ligação a DNA/genética , Epigênese Genética , Histona Metiltransferases/genética , Mutação , Proteínas de Neoplasias/genética , Neoplasias de Mama Triplo Negativas/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Neoplasias de Mama Triplo Negativas/diagnóstico
13.
Nanomaterials (Basel) ; 9(12)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888247

RESUMO

Dasatinib (DAS) is a multikinase inhibitor that acts on several signaling kinases. DAS is used as a second-line treatment for chronic accelerated myeloid and Philadelphia chromosome-positive acute lymphoblastic leukemia. The therapeutic potential of DAS in other solid tumours is under evaluation. As for many other compounds, an improvement in their pharmacokinetic and delivery properties would potential augment the efficacy. Antibody-targeted biodegradable nanoparticles can be useful in targeted cancer therapy. DAS has shown activity in human epidermal growth factor receptor 2 (HER2) positive tumors, so conjugation of this compound with the anti-HER2 antibody trastuzumab (TAB) with the use of nanocarriers could improve its efficacy. TAB-targeted DAS-loaded nanoparticles were generated by nanotechnology. The guided nanocarriers enhanced in vitro cytotoxicity of DAS against HER2 human breast cancer cell lines. Cellular mechanistic, release studies and nanoparticles stability were undertaken to provide evidences for positioning DAS-loaded TAB-targeted nanoparticles as a potential strategy for further development in HER2-overexpressing breast cancer therapy.

14.
PLoS One ; 13(11): e0207776, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30485330

RESUMO

Regulation of transcription is a key process in cellular homeostasis. It depends on regulators that either repress or stimulate the transcription of genes, therefore controlling different biological functions. The Nuclear Receptor Corepressor 1 (NCOR1) is one of those co-repressors that regulate the transcription by facilitating the recruitment of HDAC1, 2, 3, 4, 5 and 7. In our article, by using an in silico approach, we evaluate the mutational status of NCOR1 in breast and lung tumors. We identified that NORC1 is mutated in more than 3% of breast tumors and lung adenocarcinomas and linked this fact with detrimental outcome in some subtypes, particularly in those that are hormone receptor negative. In addition to these findings, as mutations in this gene are deleterious, we confirmed that high levels of this gene were linked with good prognosis in the same tumor subtypes. Findings in the same direction were identified in lung adenocarcinomas, with mutations associated with detrimental prognosis and high expression with better outcome. In conclusion, hereby we describe the presence and prognostic role of mutations in the NCOR1 gene in hormone receptor negative breast and lung adenocarcinomas, and we also confirm that NCOR1 is a tumor suppressor gene. Further studies should be performed to explore therapeutic mechanisms to restore its function.


Assuntos
Adenocarcinoma de Pulmão/genética , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Correpressor 1 de Receptor Nuclear/genética , Transdução Genética , Adenocarcinoma de Pulmão/diagnóstico , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Perfilação da Expressão Gênica , Humanos , Mutação , Prognóstico , Análise de Sobrevida
15.
Mol Diagn Ther ; 21(3): 337-343, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28247182

RESUMO

BACKGROUND: Companion diagnostics permit the selection of patients likely to respond to targeted anticancer drugs; however, it is unclear if the drug development process differs between drugs developed with or without companion diagnostics. Identification of differences in study design could help future clinical development. PATIENTS AND METHODS: Anticancer drugs approved for use in solid tumors between 28 September 2000 and 4 January 2014 were identified using a search of the US FDA website. Phase III trials supporting registration were extracted from the drug label. Each published study was reviewed to obtain information about the phase I and II trials used for the development of the respective drug. RESULTS: We identified 35 drugs and 59 phase III randomized trials supporting regulatory approval. Fifty-three phase I trials and 47 phase II trials were cited in the studies and were used to support the design of these phase III trials. The approval of drugs using a companion diagnostic has increased over time (p for trend 0.01). Expansion cohorts were more frequently observed with drugs developed with a companion diagnostic (62 vs. 20%; p = 0.005). No differences between drugs developed with or without a companion diagnostic were observed for the design of phase I and II studies. CONCLUSIONS: The approval of drugs developed with a companion diagnostic has increased over time. The availability of a companion diagnostic was associated with more frequent use of phase I expansion cohorts comprising patients selected by the companion diagnostic.


Assuntos
Antineoplásicos , Técnicas de Diagnóstico Molecular , Seleção de Pacientes , Ensaios Clínicos Fase III como Assunto , Aprovação de Drogas , Humanos , Neoplasias/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
16.
Oncotarget ; 8(12): 19478-19490, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28061448

RESUMO

Metastatic triple negative breast cancer (TNBC) is an incurable disease with limited therapeutic options, and no targeted therapies available. Triple negative tumors and the basal-like genomic subtype, are both characterized by a high proliferation rate and an increase in cell division. In this context, protein kinases involved in the mitotic formation have a relevant role in this tumor subtype. Recently, Bromodomain and extraterminal domain (BET) inhibitors have shown to be active in this disease by modulating the expression of several transcription factors. In this article, by using an "in silico" approach, we identified genomic functions that can be inhibited pharmacologically in basal-like tumors. Functional annotation analyses identified "cell division" and "regulation of transcription" as upregulated functions. When focus on cell division, we identified the polo-like kinase 1 (PLK) as an upregulated kinase. The PLK inhibitor Volasertib had the strongest anti-proliferative effect compared with other inhibitors against mitotic kinases. Gene expression analyses demonstrated that the BET inhibitor JQ1 reduced the expression of kinases involved in cell division, and synergized with Volasertib in a panel of triple negative cell lines. Combination of both agents augmented cell death. Similarly, combination of both compounds reduced the expression of stem cell markers. Globally, this data demonstrates the synergistic interaction between BET and PLK inhibitors, paving the way for their future clinical development.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Carcinoma Basocelular/tratamento farmacológico , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Histona Acetiltransferases , Chaperonas de Histonas , Humanos , Invasividade Neoplásica , Células Tumorais Cultivadas , Quinase 1 Polo-Like
17.
Cell Commun Signal ; 13: 11, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25889342

RESUMO

BACKGROUND: The viral G protein-coupled receptor (vGPCR) is proposed to act as one of the predominant mediators of Kaposi's sarcoma (KS), a human herpes virus 8 (HHV8)-elicited disease. The actions of vGPCR manifest pathogenesis, in part, through increased permeability of endothelial cells. Endothelial cell-cell junctions have indeed emerged as an instrumental target involved in the vasculature defects observed within the tumor microenvironment. The pathway leading to adherens junction destabilization has been shown to involve the activation of the small GTPase Rac, in the context of either latent infection or the sole expression of vGPCR. However, the precise molecular mechanisms governed by vGPCR in vascular leakage require further elucidation. FINDINGS: Guanine exchange factors (GEFs) function as critical molecular switches that control the activation of small GTPases. We therefore screened the effects of 80 siRNAs targeting GEFs on vGPCR-driven endothelial permeability and identified switch-associated protein 70 (SWAP70) as necessary for its elevating effects. Pull-down experiments further showed that Rac activation by vGPCR was dependent on SWAP70. Examination of tissues and cells from HHV8-positive patients revealed that SWAP70 was ubiquitously expressed. Furthermore, SWAP70 was found to be crucial for vGPCR-driven endothelial tube formation and endothelial sprouting in vitro. CONCLUSIONS: SWAP70 appears to act as a molecular intermediate between vGPCR and endothelial activation. Because of the important role of vGPCR-mediated endothelial plasticity in KS pathogenesis, inhibition of SWAP70 function could be of interest for blocking vGPCR-driven activities in HHV8-defined diseases.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Herpesvirus Humano 8/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Virais/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Herpesvirus Humano 8/genética , Humanos , Antígenos de Histocompatibilidade Menor , Proteínas Nucleares/genética , Receptores Acoplados a Proteínas G/genética , Proteínas Virais/genética
18.
PLoS One ; 6(12): e28406, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22164285

RESUMO

The p38 MAPK signaling pathway has been proposed as a critical mediator of the therapeutic effect of several antitumor agents, including cisplatin. Here, we found that sensitivity to cisplatin, in a system of 7 non-small cell lung carcinoma derived cell lines, correlated with high levels of MKK6 and marked activation of p38 MAPK. However, knockdown of MKK6 modified neither the response to cisplatin nor the activation of p38 MAPK. Deeper studies showed that resistant cell lines also displayed higher basal levels of MKK3. Interestingly, MKK3 knockdown significantly decreased p38 phosphorylation upon cisplatin exposure and consequently reduced the response to the drug. Indeed, cisplatin poorly activated MKK3 in resistant cells, while in sensitive cell lines MKK3 showed the opposite pattern in response to the drug. Our data also demonstrate that the low levels of MKK6 expressed in resistant cell lines are the consequence of high basal activity of p38 MAPK mediated by the elevated levels of MKK3. This finding supports the existence of a regulatory mechanism between both MAPK kinases through their MAPK. Furthermore, our results were also mirrored in head and neck carcinoma derived cell lines, suggesting our observations boast a potential universal characteristic in cancer resistance of cisplatin. Altogether, our work provides evidence that MKK3 is the major determinant of p38 MAPK activation in response to cisplatin and, hence, the resistance associated with this MAPK. Therefore, these data suggest that the balance between both MKK3 and MKK6 could be a novel mechanism which explains the cellular response to cisplatin.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 6/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Interferência de RNA , Transdução de Sinais
19.
PLoS One ; 4(7): e6124, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19568437

RESUMO

Resistance to Imatinib Mesylate (IM) is a major problem in Chronic Myelogenous Leukaemia management. Most of the studies about resistance have focused on point mutations on BCR/ABL. However, other types of resistance that do not imply mutations in BCR/ABL have been also described. In the present report we aim to study the role of several MAPK in IM resistance not associate to BCR/ABL mutations. Therefore we used an experimental system of resistant cell lines generated by co-culturing with IM (K562, Lama 84) as well as primary material from resistant and responder patient without BCR/ABL mutations. Here we demonstrate that Erk5 and p38MAPK signaling pathways are not implicated in the acquired resistance phenotype. However, Erk2, but not Erk1, is critical for the acquired resistance to IM. In fact, Bcr/Abl activates preferentially Erk2 in transient transfection in a dose dependent fashion through the c-Abl part of the chimeric protein. Finally, we present evidences demonstrating how constitutive activation of Erk2 is a de novo mechanism of resistance to IM. In summary our data support the use of therapeutic approaches based on Erk2 inhibition, which could be added to the therapeutic armamentarium to fight CML, especially when IM resistance develops secondary to Erk2 activation.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Piperazinas/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/uso terapêutico , Benzamidas , Western Blotting , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática , Genes abl , Humanos , Mesilato de Imatinib , Imuno-Histoquímica , Imunoprecipitação , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Piperazinas/uso terapêutico , Mutação Puntual , Pirimidinas/uso terapêutico , Transdução de Sinais
20.
Int J Cancer ; 122(2): 289-97, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17893873

RESUMO

Activation of p38 MAPK is a critical requisite for the therapeutics activity of the antitumor agent cisplatin. In this sense, a growing body of evidences supports the role of c-Abl as a major determinant of p38 MAPK activation, especially in response to genotoxic stress when triggered by cisplatin. Here, we demonstrate that p38 MAPK activation in response to cisplatin does not require the tyrosine kinase activity of c-Abl. Indeed, c-Abl can activate the p38 MAPK signaling pathway by a mechanism that is independent of its tyrosine kinase activity, but that instead involves the ability of c-Abl to increase the stability of MKK6. Similar results were obtained in chronic myeloid leukemia-derived cell lines, in which a chimeric Bcr/Abl protein mimics the effects of c-Abl overexpression on p38 MAPK activation. These findings may explain why a clinically used c-Abl inhibitor, imatinib mesylate, fails to inhibit the p38 MAPK pathway alone or in combination with cisplatin, and provide evidence of a novel signaling mechanism in which these antitumor agents act.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Regulação Neoplásica da Expressão Gênica , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Benzamidas , Linhagem Celular Tumoral , Cicloeximida/farmacologia , Regulação Leucêmica da Expressão Gênica , Humanos , Mesilato de Imatinib , MAP Quinase Quinase 6/metabolismo , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Piperazinas/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Pirimidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...